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Chaos was introduced to ecology nearly 50 years ago1,2 to pro-
vide an explanation for widespread fluctuations in abun-
dance of natural populations. The defining characteristics of 

chaos are bounded, deterministic, aperiodic dynamics that depend 
sensitively on initial conditions. If common, chaos would offer the 
promise of short-term predictability while setting hard limits on 
long-term forecasting3. It would also mean that the ‘stable ecosystem’ 
paradigm—the theoretical justification for linear statistical models 
of ecological dynamics4 and steady-state management policies5—
would need rethinking. Chaos has been observed in many ecologi-
cal models6–9, demonstrated in laboratory experiments (for example, 
insects10, microbes11 and plankton12) and detected in a handful of 
well-studied field systems13–16. However, most meta-analyses assess-
ing the prevalence of chaos in natural field populations have found 
chaos to be absent or rare17–21. The most recent global meta-analysis 
concluded that only 1 out of 634 ecological time series was chaotic18.

The apparent rarity of chaos in free-living natural populations 
is a mystery for several reasons. Ecosystems involve tens to thou-
sands of species and large complex systems are prone to chaos9,22,23. 
Nonlinear dynamics, a necessary condition for chaos, are also 
common in ecological time series24 and many abiotic drivers of 
population dynamics are themselves chaotic25. In light of this, 
we hypothesize that the dearth of evidence for ecological chaos 
reflects methodological and data limitations, rather than genuine 
rarity. Importantly, many meta-analyses in ecology have tested for 
chaos by fitting one-dimensional, parametric population models 
to time series17–20—models in which the current state depends only 
on the last state and this dependency is constrained to a particu-
lar functional form. We know from theory and focused empirical 
studies that overcompensation is not the only mechanism that 
can generate chaos and that chaos often arises through ecologi-
cal interactions16,26. Although seminal models of ecological chaos 
were one-dimensional1, using one-dimensional models to classify 
natural populations treats ecological complexity (for example, spe-
cies interactions) as noise, thereby hindering chaos detection27,28. 
Non-parametric, multidimensional methods for chaos detection 
that make minimal assumptions about the dynamics27,29,30 are more 
mathematically robust and potentially more accurate, particularly 
in cases where the underlying dynamics are complex and not well 
understood. In contrast to the one-dimensional parametric studies,  

the last global meta-analysis to use flexible, higher-dimensional 
methods, published in 1995, found evidence for chaos in 11% of 
27 field time series (excluding four series on measles cases), noting 
that this was probably an underestimate30. The question of chaos 
prevalence using comparable methods has not been revisited and, in 
the interim, many more time series of sufficient length have become 
available—a critical factor for detecting chaos31. In addition, new 
chaos detection tools are also now available32–35 but how these meth-
ods, developed outside ecology, will perform on ecological time 
series is unknown.

Here, we revisit whether chaos is, in fact, rare in ecological sys-
tems using a suite of flexible, higher-dimensional approaches. The 
definitive and most widely used index of chaos is the Lyapunov 
exponent (LE), which measures the average rate of divergence 
between nearby points in phase space36 (Supplementary Note 2). 
Positive LE values are indicative of chaotic dynamics. We selected 
two methods of estimating LEs (direct37 and Jacobian31) and four 
additional chaos detection algorithms (recurrence quantification 
analysis32, permutation entropy33, horizontal visibility graphs34 and 
the chaos decision tree35).

We tested the six methods on data simulated with a variety of 
chaotic, periodic and stochastic models to benchmark misclassifi-
cation rates under ecologically relevant time series lengths and lev-
els of noise (Supplementary Notes 2–4). We tested the generality of 
this classification accuracy using two additional suites of simulation 
models. Three methods had error rates >0.5 and so were not pur-
sued further (Table 1 and Extended Data Fig. 1). This included the 
direct LE method, which was unable to differentiate divergence due 
to chaos from divergence due to noise38. We applied the remaining 
three methods (Jacobian, recurrence quantification and permuta-
tion entropy) to time series from the Global Population Dynamics 
Database (GPDD)39. The GPDD aggregates 4,471 time series from 
1,891 taxa. Previous analyses of the GPDD have concluded that 
many of these time series are too noisy to permit accurate mod-
elling40,41. Therefore, we restricted our attention to the subset of 
the GPDD where chaos could be detected if present; that is, rela-
tively long time series of good data quality without any major gaps 
(Methods). Applying these criteria produced a dataset of 172 time 
series representing 138 different taxa from 57 distinct locations 
with between 30 and 197 observations. To confirm the prevalence 
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of chaos among plankton in the GPDD, which were sampled largely 
from one location, we also analysed an independent dataset of 34 
zooplankton time series from three lakes with between 138 and 639 
observations.

We then explored how Jacobian LE values varied among taxa 
and depended on intrinsic timescale (generation time), body size 
(mass), time series length (generations sampled) and embedding 
dimension (E) which we define here as the number of lags needed 
to reconstruct the dynamics (Supplementary Note 1). The Jacobian 
method estimates LEs from a local linear model fit to lags of the 
time series42,43.

Results and discussion
Across three independent classification methods, at least one-third 
of the GPDD time series were classified as chaotic (Table 1). The 
most conservative estimate (34%) was obtained with the Jacobian 
LE method, which in our simulations had the best performance on 
short time series, was the most robust to process noise and under-
estimated the frequency of chaos in the presence of substantial 
observation error (Supplementary Note 4). We focus most of our 
remaining analyses on the Jacobian LE estimates.

Noise and non-stationarity can affect the classification of time 
series and, on the basis of tests with low-dimensional parametric 
models, these were found to be present in the GPDD40,44. However, 
the time series we selected for chaos detection only partially overlap 
these previous studies. Hence, we needed to address the role that 
noise and non-stationarity play in our specific results. If noisy time 
series were being incorrectly classified as chaotic, we would expect 
a higher frequency of chaos among series with lower prediction 
accuracy. However, the fraction classified as chaotic by the Jacobian 
method did not vary with prediction R2 (logistic regression, n = 172, 
X2
d.f.=1 = 0.006, P = 0.9; Extended Data Fig. 2a) and series with high 

prediction error did not have higher LEs (Extended Data Fig. 2b). 
The frequency of chaos (34%) also did not change if only series with 
prediction R2 > 0.25 were considered. So, although chaotic series 
were more variable than non-chaotic series (Fig. 1a), they were 
actually somewhat more predictable (Fig. 1b); hence observation 
error is not inflating the frequency of chaos.

If non-stationarity in the mean was driving the results, we should 
expect chaotic series to exhibit strong monotonic trends, exponen-
tial growth or nearly linear dynamics. Only six time series that had 
either strong monotonic trends and/or near-linear dynamics were 
misclassified as chaotic (Fig. 1c,d). Reclassifying these series (four 

birds, one mammal and one insect) as not chaotic reduced the fre-
quency of chaos to 30%. The majority of chaotic series, however, 
were strongly nonlinear (Fig. 1c), did not display a strong mono-
tonic trend (Fig. 1d and Extended Data Fig. 2c,d) and had a median 
growth rate near 0. Although these metrics do not capture more 
subtle forms of non-stationarity, they suggest that non-stationarity 
and exponential growth are not responsible, by and large, for the 
observed frequency of chaos.

These observations in the GPDD time series are consistent with 
our simulations and previously published results45: the Jacobian 
method was less likely to find chaos as observation noise increased, 
was minimally affected by process noise, rarely classified long-term 
trends as chaotic and effectively discriminated between chaos and 
stochastic linear dynamics with seasonality (Supplementary Figs. 
1–5). Taken together, these analyses indicate that the frequency of 
ecological chaos is not an artefact.

So, why is chaos more prevalent in our study than in previous 
meta-analyses? Whereas the methods used here make minimal 
assumptions about the dynamics, most earlier analyses classi-
fied series by fitting one-dimensional population models17–20. To 
evaluate the effect of these constraints on chaos detection, we 
first restricted the Jacobian method to E = 1, essentially fitting a 
one-dimensional non-parametric model. This reduced the apparent 
frequency of chaos in the GPDD from 34% to 9.9%, with reduc-
tions seen across all taxonomic groups (Fig. 2). Changes in classifi-
cation were most common among populations in which the optimal 
E was high (Supplementary Fig. 6), consistent with the hypothesis 
that reducing dimensionality inhibits chaos detection. When we 
fit a set of one-dimensional parametric models used in previous 
meta-analyses, this further reduced the apparent frequency of chaos 
to 6% or less (Supplementary Note 5 and Extended Data Fig. 3). 
Thus, the one-dimensional parametric assumption used in other 
meta-analyses probably explains the rarity of chaos detection in 
these studies.

Data limitation might also account for differences with other 
analyses, many of which used much shorter time series. To address 
this, we re-evaluated the prevalence of chaos in the 106 time series 
with at least 50 data points; 42% were chaotic. Restricting further 
to the 57 series with at least 70 data points increased the prevalence 
of chaos to 58%. Overlong sampling intervals might also bias our 
results because time series with sampling intervals larger than the 
Lyapunov horizon (timesteps on the order of LE−1) should appear 
effectively stochastic, producing false negatives. Of the 30 series 
with at least 70 data points and less than four generations per 
timestep (none of which were plankton), 40% were classified as cha-
otic. Hence, chaos seems to be more visible in longer series, but long 
sampling intervals do not appear to inflate the prevalence of chaos. 
Approaching this from the other direction, we found that 42% of 
the chaotic time series were no longer classified as chaotic when 
truncated to 30 data points (the minimum length used in our analy-
sis). These results are consistent with our simulations results where 
data limitation increased the false negative rate much more than 
the false positive rate (Supplementary Note 4 and Supplementary 
Figs. 1–5). Thus, with longer time series we expect to see a greater 
fraction of populations classified as chaotic. These results probably 
explain why other meta-analyses using very short time series (<20 
data points) found no evidence for chaos21.

Having allayed most reasonable qualms about statistical arte-
facts, we further explored the biological contexts in which chaos 
occurs. The frequency of chaos differed among taxonomic groups; 
phytoplankton had the greatest proportion of chaotic series (81%), 
followed by zooplankton (77%), insects (43%), bony fishes (29%), 
birds (18%) and mammals (16%) (Fig. 2). The prevalence of chaos 
decreased in species with longer generation times (logistic regres-
sion, n = 166, X2

d.f.=1 = 26.7, P < 0.001; Fig. 3a) which tended to  
have lower LEs as well (Fig. 3b). E also tended to decrease with 

Table 1 | error rates for six chaos detection methods on 
simulated datasets and rates of chaos detection in the empirical 
gPDD dataset using the three most reliable methods

Chaos detection method False 
negative 
rate

False 
positive 
rate

gPDD fraction 
chaotic (number 
of series)

(1) Jacobian LE 0.29 0.04 0.34 (58)

(2) Recurrence quantification 
analysis

0.37 0.13 0.41 (71)

(3) Permutation entropy 0.26 0.18 0.51 (87)

(4) Direct LE 0.08 0.66

(5) Horizontal visibility algorithm 0.62 0.10

(6) Chaos decision tree 0.73 0.02

Methods are ranked by reliability. False negative and false positive rates are pooled across all 
simulated datasets (test and two validation datasets, all models, noise levels, time series lengths 
and replicates; Supplementary Note 3). See Extended Data Fig. 1, Supplementary Figs. 1–5  
and Supplementary table 1 for disaggregated results. Values in bold indicate misclassification  
rates >0.5.
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increasing generation time (Pearson r = −0.30) and was lowest 
among birds (Supplementary Fig. 7). There are several possible 
explanations for this pattern. Long-lived species definitionally have 
lower average mortality rates. Hence, on a per unit time basis (but 
not per generation), we might expect long-lived species to have rela-
tively weaker interactions with other species, leading to lower LE 
and E compared with short-lived taxa. Long-lived species may also 
be better insulated from chaotic environmental drivers19,46. Data 
limitations might also account for lower rates of chaos in long-lived 
species, as chaos detection depends on the time series length rela-
tive to the intrinsic timescale for the system. If having fewer genera-
tions sampled reduces the ability to detect chaos, we would expect 
data truncation to have a larger effect on species with longer genera-
tion times. There was a trend where species with longer generation 
times were more likely to be reclassified as non-chaotic when series 
were truncated to 30 data points; however, this result was not statis-
tically significant (logistic regression, n = 49, X2

d.f.=1 = 0.79, P = 0.38; 
Supplementary Fig. 8).

Recent evidence indicates that LEs scale with body mass in exper-
imental demonstrations of chaos47. To determine how generally this 
applies to natural populations, we evaluated whether variation in 
LEs among chaotic species exhibited analogous mass (M) scaling. 
Combining LEs from our study and existing studies10–12,16,48–51 (com-
piled by ref. 47), we fit the model log10(LE) = a + b log10(M) for LE > 0 
and found evidence for consistent scaling with b = −0.15 (±0.013 
(s.e.)), P < 0.001, d.f. = 74; Fig. 4). For LEs from the GPDD, there was 

no interaction between mass and taxon and a marginally significant 
effect of taxon (analysis of variance, log10(M): F1,45 = 48.4, P < 0.001; 
taxon: F5,45 = 2.4, P = 0.049; log10(M) × taxon: F5,45 = 1.2, P = 0.33), 
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suggesting that differences in mass account for most of the average 
differences in LE among broad taxonomic groups. To account for 
potential non-independence of LEs within locations, we repeated 
the regression of log10(LE) on log10(M) with general least squares 
and again using only location means. The resulting slopes differed 
by no more than 0.02. The consistency of LE scaling between labo-
ratory and natural populations cannot readily be explained as a sta-
tistical artefact. Moreover, since the laboratory-derived LEs are not 
artefacts of observation noise or non-stationarity, consistent scaling 
with the field data provides additional evidence for chaos in natural 
populations.

The 172 GPDD series come from 57 distinct locations, raising 
the potential issue of non-independence (for example, 33 of 34 
plankton and 15 of 17 fish time series each came from one location; 
Extended Data Fig. 4a). In a well-mixed system where all variables 
interact on similar timescales, there will be a unique maximum LE 
and the LEs estimated from each state variable should be similar, as 
has been observed in some laboratory studies12. However, in systems 
with weak coupling, modularization or separation of timescales—
processes known to occur in natural ecosystems52,53—different 
LEs can be reconstructed from different variables, representing a 
range of dynamics corresponding to different subsystems. In fact, 
we hypothesize that this weak coupling and timescale separation 
contribute to the observed mass scaling of the LEs. The number of 
independent LEs at a given location will be somewhere between one 
and the number of species sampled. The exact number in our data-
base is not resolvable, however, as only three locations had more 
than eight time series (Extended Data Fig. 4a) and tools to resolve 
these subsystems have yet to be developed and tested (an important 
next step). As a coarse first pass, examining the distribution of LEs 
suggests bimodality in two of the three locations with more than 
eight series (Extended Data Fig. 5); however, this distribution can-
not be resolved for the other locations. Thus, we have presented our 
results at the time series level but recognize that further resolution 
is required. For the time being, we can conduct a conservative test 
of system-level chaos by assuming that each location represents one 
well-mixed system and asking whether the median LE for each loca-
tion is chaotic (>50% of LEs are significantly >0 with 95% confi-
dence). By this standard, 21% (12/57) of locations were chaotic and 
the prevalence of chaotic locations was 41% (5/12) in insects, 25% 
(4/16) in birds and 9% (2/22) in mammals (plankton and fish were 
not sufficiently well represented to compute this frequency). We 
can also use the error rates from our simulation study to compute 
the probability that a system is chaotic, accounting for the known 

asymmetry between false positive and false negative rates (with the 
important caveat that these error rates are dependent on the par-
ticular suite of simulations used). By this standard, 25% of locations 
had a >50% probability of being chaotic and 19% of locations had a 
>80% probability of being chaotic (Extended Data Fig. 4b). Both of 
these location-level results are consistent with our time-series level 
results and our finding that chaos is not rare.

At the time series level, our estimate of 34% is greater than 
that of the last meta-analysis to use higher-dimensional models 
and Jacobian LEs30 (11%) and the difference may simply reflect 
an absence of plankton in their database. As most plankton in the 
GPDD are from a relatively open marine system, it is plausible that 
what appears here as chaos reflects advection of patchily distributed 
populations. To address this, and the fact that all zooplankton series 
came from a single location, we evaluated the frequency of chaos 
and mass scaling of LEs in additional time series of zooplankton 
from three lakes. The prevalence of chaos for the lake zooplank-
ton time series was 47% and all lakes had a >60% location-level 
probability of chaos. Among the chaotic taxa, none of these new LE 
estimates was significantly different from the mass scaling derived  
from the GPDD (deviation of observed values from regression 
predictions, P > 0.05 for all; Fig. 4). It is exceedingly unlikely that 

0

0.25

0.50

0.75

1.00

2 1 0 1 2

 log10 [generation time (months)]

P
ro

po
rt

io
n 

ch
ao

tic

a

1.5

1.0

0.5

0

0.5

2 1 0 1 2

 log10 [generation time (months)]

LE
 (

m
on

th
–1

)

b

E

1

2

3

4

5

6

Fig. 3 | Chaotic dynamics in relation to generation time. a, Proportion of time series classified as chaotic using the Jacobian method. Chaotic series are 
coded as 1 and non-chaotic series as 0. Points are vertically jittered to reduce overlap. the line is a logistic (Bernoulli) regression and associated band is 
the 95% confidence interval. b, Values of the LE plotted against generation time. In a and b, colour indicates the embedding dimension, E.

3

2

1

0

15 10 5 0

 log10 [mass (g)]

lo
g 1

0 
[L

E
 (

m
on

th
–1

)]

Taxonomic
group

Birds
Bony fishes
Insects
Mammals
Phytoplankton
Zooplankton
Marine inverts
Microbes

Source
AG2020
GPDD
Lakes

Fig. 4 | Positive Les in relation to body mass. Colour distinguishes broad 
taxonomic groups. Includes data from this study (gPDD and supplemental 
results from three lake systems) and positive LEs compiled by ref. 47 
(Ag2020). the log–log scale is in keeping with previous studies47. Note 
that the lakes data (squares) were not used to fit the regression line. 
Supplementary Fig. 9 shows the same points with lower confidence intervals.

NaTuRe eCoLogy & evoLuTioN | VOL 6 | AUgUSt 2022 | 1105–1111 | www.nature.com/natecolevol1108

http://www.nature.com/natecolevol


ArticlesNaTurE ECoLogy & EvoLuTIoN

advection would result in LEs that scale with mass consistently 
across three datasets, although it may contribute to the frequency 
of chaos.

Conclusions
Single species models are routinely used to evaluate population sta-
tus in applied fields such as fisheries5 and conservation biology54. 
However, our results clearly show that scalar population models 
typically mischaracterize dynamics, treating complexity as noise 
and leading to the conclusion that chaos is rare17–19,55. As noted by 
Robert May, such models “do great violence to reality”56. More flex-
ible methods (for example, refs. 30,43,45) are better able to character-
ize complex dynamics and integrating these into population status 
assessments is an important area for future research.

Reflecting on the frequency of chaos in natural populations, we 
note that birds and mammals, the least chaotic taxa, make up 58% 
of the time series we analysed but represent <1% of the species on 
earth57. Thus, chaos may be considerably more common than the 
one-third presented here. Diseases, genetic variants, species and 
statistical events are labelled ‘rare’ using thresholds ranging from 
0.001% to 5%. By these standards, chaos in natural ecosystems is 
far from rare. This presents both challenges and opportunities for 
ecology as a predictive science; although short-term forecasting is 
feasible58, precise long-term prediction is likely to be impossible and 
management should avoid defining objectives in terms of equilib-
rium conditions. However, with increasing amounts of data and 
modern learning algorithms, new frontiers are open for character-
izing the complex, non-equilibrium and high-dimensional dynam-
ics of ecology which will advance both our understanding of natural 
variability and improve our ability to manage ecosystems.

Methods
Data. We obtained abundance time series data from the GPDD39 accessed 
through the R package ‘rgpdd’59. Our analyses required reasonably long and 
continuous time series and for organisms to be detected with sufficient frequency 
to reconstruct their dynamics. Consequently, we selected series with a reliability 
score of at least 2, at least 30 non-missing time points, at least 5 unique abundance 
values, <60% zeros and <22% missing time points (in our dataset, this resulted in 
time series having no more than 11 missing values). We used only field-collected 
survey data (we excluded laboratory and harvest data), excluded human diseases 
and excluded the shorter and lower-quality of six duplicate time series that passed 
our filtering.

Our final dataset contained 172 time series representing 138 different taxa 
from 57 sampling locations. Of these series, there were 109 sampled annually, 53 
monthly, 8 semi-annually and 2 bimonthly. There were 62 series from birds (Aves), 
38 from mammals (Mammalia), 21 from insects (Insecta), 21 from phytoplankton 
(Bacillariophyceae, Dinophyceae), 17 from bony fishes (Osteichthyes) and 13 from 
zooplankton (Bivalvia, Crustacea, Echinoidea, Gastropoda, Polychaeta, Scyphozoa, 
Chaetognatha). Time series lengths ranged from 30 to 197 timesteps. For sample 
time series, see Extended Data Fig. 6.

Before analysis, all untransformed abundance time series were rescaled to 
unit variance by dividing by the standard deviation. This transformation was 
not strictly necessary but aided in visualization and diagnostics. To allow for 
log transformations and calculations of population growth rate, ln (xt/xt−τ), all 
time series containing zeros were rescaled after adding a constant (1 if all values 
were integers, the minimum non-zero value if the series contained non-integers). 
Leaving the zeros intact and using only model forms that did not require log 
transformations produced similar results.

As a measure of organismal intrinsic timescale, generation time was obtained 
from published sources for all species in our dataset. We used the age at first 
reproduction as a proxy for generation time, unless direct estimates of generation 
time or doubling time were available. Wet body mass was obtained from published 
sources or, if unavailable, was estimated from volume, assuming that organisms 
have the same density as water. Generation time and mass data were not included 
for seven taxa that were not finely resolved enough taxonomically to obtain this 
information. Sources for generation time and mass were the following: birds, 
mammals, fish, insects from ref. 60; diatoms from refs. 61,62; insect masses not 
included in ref. 60 from refs. 63–68; copepods from refs. 69–71; and dinoflagellates  
from refs. 72,73.

The plankton data in the GPDD are nearly all marine and thus from relatively 
open systems. Hence, it is possible that their dynamics reflect water movement in 
addition to population growth. However, these time series display seasonal peaks 
and troughs that persist for months, rather than the more ephemeral fluctuations 

expected from water mass movement and it seems reasonable to assume that 
these represent population dynamics over a large spatial area as opposed to 
fluid dynamics. Nevertheless, to assess the robustness of these plankton results, 
we performed a supplemental analysis on 34 monthly zooplankton time series 
data from three lake systems which are arguably more ‘closed’ than the marine 
environment. These systems were Lake Zurich (Wasserversorgung Zürich),  
Lake Geneva (SOERE OLA-IS, AnaEE-France, INRA of Thonon-les-Bains,  
CIPEL, 19 December 2019, developed by the Eco-Informatique ORE system of 
the INRA74) and Oneida Lake75. We also required these series to have <60% zeros. 
Mass data for these species were obtained from refs. 63,76–79. If only dry mass was 
available, we assumed dry mass was 20% of wet mass for arthropods and 4% of wet 
mass for rotifers76,80.

Analysis. Our goal was to use a combination of modern and classical methods 
for detecting chaos to characterize ecological time series. However, most of these 
methods were developed in data-rich fields and tested on finely spaced time 
series with thousands to millions of observations. Therefore, we began by testing 
six chaos detection methods on simulated data from 37 stochastic, periodic 
and chaotic models with ecologically relevant time series lengths and levels of 
observation and process noise. These simulations included both a test set of models 
used for tuning and new sets of models used for validation and evaluation of 
generality. The specific classification methods we tested were the ‘direct’ method 
of estimating Lyapunov exponents (DLE)37, the Jacobian method of estimating 
Lyapunov exponents (JLE)31,43, recurrence quantification analysis (RQA)32,81, 
permutation entropy (PE)33, the horizontal visibility algorithm (HVA)34,82 and the 
chaos decision tree (CDT)35. Note that the more traditional DLE and JLE have 
been tested previously30,31,38,45,83 and we re-test them here for comparison with the 
newer methods. Supplementary Note 1 provides a brief background on time-delay 
embedding and a comparison of methods for selecting the embedding dimension 
and time delay which are used in many of the detection methods. Supplementary 
Note 2 provides the mathematical definition for LE and full details on our 
implementation of each detection method. Supplementary Note 3 provides details 
on the simulation models and Supplementary Note 4 summarizes results of the 
simulation testing.

Under the conditions of our simulations, DLE, HVA and CDT had either false 
positive or false negative rates >0.5 in both the test and validation datasets and so 
were not pursued further. We applied the remaining methods, which all had false 
positive rates <0.2, to the empirical dataset to estimate the frequency of chaos in 
natural populations.

The JLE method derives LEs from the Jacobian matrices of a local linear 
time-delay embedding model (Supplementary Note 2.2). We explored several 
methods for generating confidence intervals for the LE and selected the 
method that produced the best classification accuracy in the simulated data 
(Supplementary Table 2). The JLE method proved to be the most accurate  
index of chaos in the simulated test and validation datasets with the lowest false 
positive rate.

Note that LEs based on short time series, such as those used in this analysis, 
are more a reflection of the local, rather than global LE. While we may not be able 
to determine if a system, in the long run, is chaotic, these estimates characterize 
how the system behaved over this particular time period. Moreover, although short 
time series may not generate a precise estimate of the LE, our simulations indicate 
that, for the models tested, the sign of the LE can be accurately determined using 
relatively low sample sizes.

Since the LE also is the most widely used index of chaos and provides a 
quantitative, scale-invariant measure of divergence rate, we used the numeric 
values of the LEs to further explore the relationship between chaotic dynamics, 
intrinsic timescale, body size, time series length and embedding dimension in 
the GPDD dataset, after converting the LE from units of timestep−1 to units of 
month−1. To calculate the mass scaling of the LE, we followed previous work47,84 and 
used ordinary least squares regression on log10 transformed data for LE > 0.

To test the effect of time series length and sampling interval on the inferred 
LE (and subsequent classification), we examined the proportion of time series 
classified as chaotic if we were to restrict our analysis to only those series with at 
least 50 or 70 observations and to only those with at least 70 observations and at 
least four generations per timestep. We also truncated all time series that had been 
classified as chaotic to the last 30 observations and recomputed the LE. To account 
for the fact that some of the time series were sampled from the same locations and 
thus may (but not necessarily) represent series from the same dynamical system, 
we also computed the proportion of locations with a median LE that was chaotic 
(at least 50% of time series were chaotic with 95% confidence). To account for 
known asymmetry in the false positive and false negative rates, we also computed 
the probability that a location was chaotic using the error rates for the JLE method 
in our simulation study; however, these results should be interpreted with caution 
since we cannot know how representiative the error rates are of ecological reality. 
The corrected probability of chaos was calculated as (P − FPR)/(TPR − FPR), where 
P is observed proportion of time series classified as chaotic, FPR is false positive 
rate and TPR is true positive rate.

To test whether non-stationarity or long-term trends affected our results, we 
examined whether LEs were greater in series with stronger monotonic trends. 
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We assessed the degree of monotonic trend using the squared Spearman rank 
correlation between abundance and time. To test whether the restriction of 
dimensionality affects the inferred LE, we recomputed the LE with the embedding 
dimension set to 1. To test whether the restriction of model form, in addition 
to restricting dimensionality, affects the inferred LE, we fit a set of common 
one-dimensional population models with the form xt+1 = xtexp [f (xt, q)] to each 
time series and used the fitted model to estimate the LE (Supplementary Note 5).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The GPDD data are available on KNB with identifier https://doi.org/10.5063/
F1BZ63Z8. Zooplankton data were obtained for Oneida Lake from KNB 
(identifier kgordon.17.67), for Lake Zurich from Wasserversorgung Zürich and 
for Lake Geneva from the Observatory on LAkes (OLA-IS, AnaEE-France, INRA 
of Thonon-les-Bains, CIPEL; https://doi.org/10.4081/jlimnol.2020.1944). The 
simulated datasets and generating code are available in the code repository. The 
specific GPDD time series used and associated metadata (including compiled 
generation time and mass data) are available in the code repository.

Code availability
All analysis code is available at https://doi.org/10.5281/zenodo.6499470.
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Extended Data Fig. 1 | Classification error rates for each chaos detection method, marginalized by time series length and noise level. Results for the test 
dataset and validation dataset #1 are shown. DLE = direct Lyapunov exponent, JLE = Jacobian-based Lyapunov exponent, RQA = recurrence quantification 
analysis, PE = permutation entropy, HVg = horizontal visibility graphs, CDt = chaos decision tree.
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Extended Data Fig. 2 | Chaotic dynamics in relation to predictability and monotonic trend. (a) Proportion of time series classified as chaotic using the 
Jacobian method and (b) values of the Lyapunov exponent (LE) in relation to leave-one-out prediction R2 for abundance. (c) Proportion of time series 
classified as chaotic using the Jacobian method and (d) values of the LE in relation to monotonic trend, as measured by the squared Spearman rank 
correlation coefficient. In (A) and (C), the line is a logistic regression, associated band is the 95% confidence interval, and points are vertically jittered to 
reduce overlap. Point colour indicates taxonomic group.
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Extended Data Fig. 3 | 1-d models fit to the empirical gPDD dataset. table includes the average R2 and Lyapunov exponent (LE) across all time series and 
the proportion of time series classified as chaotic. the HLM II model extends the model of17 to allow for adult survival analogous to what19 did with the 
Ricker model85.
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Extended Data Fig. 4 | Probability of chaotic dynamics by location. (a) Number of time series per location for the 57 different locations in the gPDD 
dataset. (b) Probability that a location is chaotic, given the observed proportion of chaotic series using the Jacobian method and total error rates for the 
Jacobian method in the simulated datasets. these results assume that a location represents a single well-mixed ecosystem where species interact of 
similar timescales, which is not necessarily true. these results should also be interpreted with caution as the error rates depend the particular suite of 
simulations used, and it is impossible to know whether this suite is a good reflection of ecological reality. Colour indicates taxonomic group(s) from each 
location.
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Extended Data Fig. 5 | Distribution of Lyapunov exponents (Les) for 3 locations with more than 8 time series. Colour indicates taxonomic group for each 
time series.
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Extended Data Fig. 6 | Random sample of a chaotic and non-chaotic time series from each taxonomic group from the gPDD dataset. top to bottom: 
birds, bony fishes, insects, mammals, phytoplankton, zooplankton. Left panels were classified as chaotic using the Jacobian method, right panels as not 
chaotic. the number in parentheses is the database ID (MainID). Beyond illustrating the data, these plots corroborate the well-known fact that chaotic and 
non-chaotic series cannot be reliably differentiated by visual inspection3.
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